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1. Introduction. In two previous publications [1, 2] the author has demon- 
strated a method, based on Euler's transformation of slowly convergent alternat- 
ing series, for the numerical evaluation of infinite integrals of oscillatory func- 
tions; this can be used in many cases oy a double application for the evaluation 
of finite integrals of oscillatory functions. For example the integral 

(1) ff(x) dx 

where f(x) may have a very large number of oscillations in the range of integration 
can conveniently be evaluated as 

(2) ff(x) dx - f(x) dx. 

However in physical problems the finiteness of the range of integration is often 
associated with a kind of natural boundary of f(x), such that it is impossible to 
extend f(x) to values of x beyond the upper limit b while preserving the general 
character of f(x). Analytically speaking, x = b may be a branch point of f(x). 
Alternatively, it may be possible to extend the range of integration to infinity as 
in equation (2), but the infinite integrals may not converge. As an example of the 
branch point difficulty we can consider the integral 

(3) I f (a2 - x2) sin x dx, 

which, if a is large, would be very difficult to compute by straightforward numerical 
integration owing to the large number of oscillations, and we clearly cannot apply 
the method of equation (2). An instance of this kind of difficulty in a physical 
problem is given in Pekeris [3] where the solution of a problem of sound propaga- 
tion in a layered liquid is given in the form of infinite integrals where the character 
of the oscillatory integrand changes abruptly at a certain point in the interval of 
integration. 

The present paper gives an extension of Euler's transformation and applies 
it to the numerical computation of integrals such as (3). 

2. Description of the Method. For simplicity let us start by considering alter- 
nating series, and suppose that we wish to calculate the sum of a. series of the 
form 

(4) S = VO - VI + V2 
+ 

(-1 ) Vn 
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where the via's are all positive and slowly decrease in numerical value as i increases 
from 0 to n. For example such a series might be 

(5) S = 9999' - 9998' + 9997' - + 1A. 

In order to transform (4) into a form convenient for computation let us con- 
sider the associated power series, 

(6) S(x) = vo - v x + V2X2 + (-1)"v x', 

which reduces to (4) when x = 1. If we multiply by x and add we obtain 

(1 + x)S(x) = vo - (V1 - VO)X 

+ (V2 
_ 

V1)X2 - + (-l)'(vn - Vn-l1)X" + (_1)nVxn+l, 

or, with the usual notation for differences, 

Avi = vi+i - Vi 

A Vi = ArVi+l - ArVi 

we have 

(1 + x)S(x) = vo - (AVO)X + (AV)x - . + (-1)n(AV,_i)Xn + (-1)RV Xn+l 

This gives 

S(X) = VO + (_1)nvxn+l 
(7) 1 +X 

- Y[AVo - (AV1)X + (AV2)X2 - + ( _1)n (A&Vn-.)xn"] 

where y = x/(l + x). A second application of this transformation to the series 
in square brackets in (7) .yields 

Vo + (-1)nVxn+l_ AV0 + (-1)1 (AvN-1)Xn 

+ Y2[A2VO - (A2V1)X + (A2 V2)X2 - + (-1)-2(^A2Vn2 )Xn-2], 

and p applications give 

S(x) = (Vo - YA1o + y2'A2vo- + (-1)j-y1Ap'vo)/(j + x) 

+ (_1)n(v, xn+l + (Av"_.)x y + (A2v-,,2)xn-y2 + 

+ (APlvnp+l)XnP+ 2yPl]/(1 + x) 

+ (-)pyp[ApVo - (Apv1)x + (Apv2)x -* 

+ (-1) n( A vnp)Xn], p < n. 

Putting x = 1 we have as a transformed form of (4) 

S = [(1/2)vo - (1/4)Avo + (1/8)A2vo - + (-1)`12"(A`1vo)] 

(8) + (-1_)[( 1/2)Vn + (1/4) Avn-1 + (1/8) A2v_2 + ___+ 2Alv v_+1] 

+ 2 (-1)P[APvo - Ap vi+ APV2 - + (-1) Av v...], p < n. 
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This result is of course exact, but for large values of p (assuming that the high 
order differences are small) the later terms in the first two square brackets and 
the whole of the third square bracket in equation (8) can be neglected since 2' 
will be negligible. 

Assuming then, that n is large, we have for (4) the excellent approximation 

S = (1/2)vo -(1/4) Avo + (1/8) A2vo- I- 

(9) + ( -1) [(1/2)v + (1/4) Av,.-, + (1/8),2A,..2 + I 

which represents a kind of double application of Euler's transformation. 

3. Examples. The utility of the series (9) will be demonstrated by a number of 
examples. 

1. Consider the series 

(10) S = 1-1/2 + 1/3-1/4 + * -1/1000. 

To evaluate (10) by means of equation (9) we split off the first eight terms (whose 
differences do not decrease very rapidly) and evaluate 

(11) S' = 1/9 - 1/10 + 1/11-* - - 1/1000. 

The contribution at the first eight terms of S is 0.634524, and so 

S = 0.634524 + S'. 

The differencing of the first few and the last few terms of S' is shown in Table 1. 
From this, by means of equation (9), we obtain 

S' = (1/2) X 0.111111 + (1/4) X 0.011111 + (1/8) X 0.002020 

+ (1/16) X 0.000505 + (1/32) X 0.000156 + (1/64) X 0.000057 

- (1/2) X 0.001000 + (1/4) X 0.000001 = 0.058123. 

Thus S = 0.692647. As a check we can calculate (10) as the difference between 
two infinite series 

S = (1-1/2 + 1/3-1/4 + *-- ) 

(12) - (1/1001 - 1/1002 + 1/1003 - ) 
= ln2- (1/1001 - 1/1002 + 1/1003 - *-- ). 

The series in parentheses in (12) can be evaluated by applying Euler's transforma- 
tion, and its sum is easily shown to be 

0.000499. 

Thus working with equation (12) we obtain 

S = 0.693147 - 0.000499 = 0.692648, 

agreeing with our previous result. 
2. In example 1 we were able to extend our series to infinity so that we really 

had no need to use the transformation (9). We now consider, however, an example 



TABLE 1 

A2 a4 AS 

9-1 = 0.111111 
-11111 

10-1 = 0.100000 2020 
-9091 -505 

11-1 = 0.090909 1515 156 
-7576 -349 -57 

12-1 = 0.083333 1166 99 24 
-6410 -250 -33 

13-1 = 0.076923 916 66 
-5454 -184 

14-1 = 0.071429 732 
-4762 

15-' = 0.066667 

994-1 = 0.001006 
-1 

995-1 = 0.001005 
-1 

996-1 = 0.001004 
-1 

997-1 = 0.001003 
-1 

998-1 = 0.001002 
-1 

999-1 = 0.001001 
-1 

1000-1 = 0.001000 

TABLE 2 

&2 

99991 = 99.995000 
-5000 

9998i = 99.990000 -2 
-5002 +2 

9997i = 99.984998 0 1 
-5002 +3 

9996' = 99.979996 3 
-4999 - 6 

9995i - 99.974997 -3 
-5002 

9994i = 99.969995 

15W = 3.872983 
-131326 

14W = 3.741657 -4780 
- 136106 -563 

134 = 3.605551 -5343 -122 
-141449 -685 -35 

121 = 3.464102 -6028 - 157 -27 
- 147477 -842 -62 

11i = 3.316625 - 6870 -219 
-154347 -1061 

101 = 3.162278 -7931 
-162279 

91 = 3.000000 
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of a series which cannot be so extended. Such a series is given in equation (5). 
This series has 9,999 terms and its direct evaluation would be a rather lengthy 
computation. However it is easily computed by an application of our transforma- 
tion in equation (9). Differencing the first few terms, and a few terms near the 
end of the series we obtain Table 2. We split off the last eight terms of the series 
(which do not difference so well) and obtain 

S = (1/2) X 99.995000 + (1/4) X 0.005000 - (1/8) X 0.000002 

+ (1/2) X 3.000000 - (1/4) X 0.162278 - (1/8) X 0.007931 

- (1/16) X 0.001061 - (1/32) X 0.000219 - (1/64) X 0.000062 

- 8' + 7' - 6' + 5' - 4' + 3' - 2' + 1' = 50.378853. 

3. Now let us turn to the evaluation of oscillatory integrals. We will illustrate 
this by evaluating the integral (3) for a = lOO1r. We have 

100w 

(3') I = f (100272 - x2)1 sin x dx. 

By splitting up the range of integration, I can be expressed as the series 
99 I 

(13) I= E (_1)2 [100272 _(r7 + x)2]V sin x dx 
r-0 

which is of the form (4). A few integrals near the beginning and near the end of 
the series (13) were evaluated on an IBM 709 computer using a 16 point Gaussian 
integration formula. The results are tabulated and differenced in Table 3. Applying 
our method we obtain 

I = (1/2) X 628.30915 + (1/4) X 0.06285 - (1/8) X 0.06284 

+ (1/16) X 0.00004 - [(1/2) X 325.85292 - (1/4) X 10.14092 

- (1/8) X 0.41146 - (1/16) X 0.03382 - (1/32) X 0.00472 

- (1/64) X 0.00089 -(1/128) X 0.00022] + 315.26077 

- 304.17027 + 292.52472 -*.-60.96022 

= 298.43558. 

As a check we apply the method differently to Table 3, obtaining 

I = 628.30915 - 628.24630 + (1/2) X 628.12061 - (1/4) X 0.18857 

- (1/8) X 0.06298 - (1/16) X 0.00002 + (1/2) X 238.71325 

- (1/4) X 14.76162 - (1/8) X 0.96185 -(1/16) X 0.14230 

- (1/32) X 0.03311 - (1/64) X 0.00997 - (1/128) X 0.00362 

- (1/256) X 0.00150 - 222.79836 + 209.46181 -*- 60.96002 

-298.43557 

agreeing with our previous result. 
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TABLE 3 
q 'Vq &2 4 

1 628.30915 
-6285 

2 628.24630 -6284 
-12569 -4 

3 628.12061 -6288 
-18857 - 10 

4 627.93204 -6298 
-25155 -2 

5 627.68049 -6300 
-31455 

6 627.36594 

79 381.13726 
- 837885 

80 372.75841 -30116 
-868001 -2211 

81 364.07840 -32327 -316 
- 900328 -2527 -67 

82 355.07512 -34854 -383 -22 
-935182 -2910 -89 

83 345.723:30 -37764 -472 
-97D2946 -3382 

84 335.99384 -41146 
-1014092 

85 325.85292 

85 325.85292 
-10599215 

86 315.26077 -49835 
-1109050 -5670 

87 304.17027 -55505 -1256 
-1164555 -6926 -423 

88 292.52472 -62431 -1679 212 
- 19-26986 -8605 -635 -150 

89 280.25486 -71036 -2314 362 
- 129802S2 -10919 -997 

90 267.27464 -81955 -3311 
-1379977 -14230 

91 253.47487 -96185 
- 1476162 

92 238.71325 
93 222.79836 
94 205.46181 
95 186.30583 
96 164.30583 
97 139.47917 
98 108.12528 
99 60.96022 
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4. Conclusion. An extension of Euler's transformation has been presented and 
its use in the computation of finite integrals of oscillatory functions demonstrated. 
It is believed that its application will render feasible the numerical solution of 
physical problems hitherto regarded as intractable. 
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